Build Better Generative Adversarial Networks (GANs)

Software > Computer Software > Educational Software DeepLearning.AI

Course Overview

What You'll Learn

  • In this course, you will: - Assess the challenges of evaluating GANs and compare different generative models - Use the FrĂ©chet Inception Distance (FID) method to evaluate the fidelity and diversity of GANs - Identify sources of bias and the ways to detect it in GANs - Learn and implement the techniques associated with the state-of-the-art StyleGANs The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach.
  • Build a comprehensive knowledge base and gain hands-on experience in GANs.
  • This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research.

In this course, you will: - Assess the challenges of evaluating GANs and compare different generative models - Use the Fréchet Inception Distance (FID) method to evaluate the fidelity and diversity of GANs - Identify sources of bias and the ways to detect it in GANs - Learn and implement the techniques associated with the state-of-the-art StyleGANs The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research.

Course FAQs

Is this an accredited online course?

Accreditation for 'Build Better Generative Adversarial Networks (GANs)' is determined by the provider, DeepLearning.AI. For online college courses or degree programs, we strongly recommend you verify the accreditation status directly on the provider's website to ensure it meets your requirements.

Can this course be used for continuing education credits?

Many of the courses listed on our platform are suitable for professional continuing education. However, acceptance for credit varies by state and licensing board. Please confirm with your board and {course.provider} that this specific course qualifies.

How do I enroll in this online school program?

To enroll, click the 'ENROLL NOW' button on this page. You will be taken to the official page for 'Build Better Generative Adversarial Networks (GANs)' on the DeepLearning.AI online class platform, where you can complete your registration.